Low-Level Laser Therapy to the Bone Marrow Ameliorates Neurodegenerative Disease Progression in a Mouse Model of Alzheimer's Disease: A Minireview.

نویسندگان

  • Amir Oron
  • Uri Oron
چکیده

OBJECTIVE This communication reviews the ability of low-level laser therapy (LLLT) to stimulate mesenchymal stem cells (MSCs) in autologous bone marrow (BM) to enhance the capacity of MSCs to infiltrate the brain, clear β-amyloid, and improve cognition. BACKGROUND We recently reported that LLLT applied to the BM enhanced the proliferation of MSCs and their mobilization toward the ischemic heart region, suggesting a possible application of this approach in regenerative medicine and neurodegenerative diseases. It was also shown that circulating monocytes can infiltrate the brain and reduce brain amyloid load in an Alzheimer's disease (AD) mouse model. METHODS AND RESULTS MSCs from wild-type mice stimulated with LLLT demonstrated an increased ability to maturate toward a monocyte lineage and to increase phagocytosis of soluble Aβ in vitro. Furthermore, weekly LLLT for 2 months to the BM, starting at 4 months of age (progressive stage of the disease in these 5XFAD transgenic male mice), improved memory and spatial learning, compared to a sham-treated AD mouse model. Histology revealed a significant reduction in Aβ brain burden in the laser-treated mice compared to the nonlaser-treated ones. CONCLUSIONS The application of LLLT to the BM is suggested as a therapeutic approach in progressive stages of AD, and its potential role in mediating MSC therapy in brain amyloidogenic disease is implied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Behavioral study of effects of mesenchymal stem cells transplant on motor deficits improvement in animal model of Huntington\'s disease

Introduction: As an inherited neurodegenerative disease, Huntington's disease is accompanied with wide neuronal degeneration in neostriatum and neocortex. Progress of the disease causes disabling clinical effects on movements, recognition and physiology of the body, and finally results in death. At this stage of knowledge we are, there is no effective therapeutic strategy for diminishing the mo...

متن کامل

Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease

Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...

متن کامل

P 155: The Roles of Microglia in Neurodegenerative Diseases

Microglia is a type of glial cell located throughout the central nervous system (CNS), which is sensitive to CNS injury and disease. Responsibility of microglia as the resident macrophage cells for injuries suggests that these cells have the potential to act as diagnostic markers of disease beginning or progression. Function of Microglia is strongly synchronized by the microenvironment of brain...

متن کامل

Effects of Local Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in Combination with Low Level Laser Therapy in Repair of Experimental Acute Spinal Cord Injury in Rats

Objective- The aim of this study was to demonstrate the efficacy MSCs transplantation in combination with low level laser irradiation (low level laser irradiation) in repair of experimental acute spinal cord injury. Design- Experimental study. Animals- 28 adult male Wistar Rats. Procedures- A ballon- compression technique was used to produce an injury at the T8-T9 level of spi...

متن کامل

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Photomedicine and laser surgery

دوره 34 12  شماره 

صفحات  -

تاریخ انتشار 2016